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Detection of diurnal variation in orchard canopy water content using MODIS/ASTER
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Retrievals of vegetation canopy water content (CWC) from remotely sensed imagery can improve our under-
standing of the water cycle and help manage irrigation of agricultural crops. Optical remote sensing data can
be used to detect seasonal CWC variation but whether they are sensitive enough for detecting diurnal CWC var-
iation remains unknown. This paper investigates whether MODIS/ASTER airborne simulator (MASTER) data can
be used to detect diurnal variation in CWCoverwell irrigated almond and pistachio orchards in the southern San
Joaquin Valley of California, USA. MASTER imageswere first corrected for the Bi-directional Reflectance Distribu-
tion Function (BRDF) effect to remove cross-track variation in reflectance amplitude. Two spectral indexes, the
Normalized Difference Infrared Index (NDII) and the Normalized Difference Vegetation Index (NDVI), were
derived from corrected morning and afternoon MASTER imagery and related to the field-measured CWC. At
the ground level, a significant decrease (~9%) in CWC occurred from morning to afternoon (pb0.0001). The
field-measured CWC was positively correlated with MASTER-derived NDII and NDVI for both morning (NDII:
r2=0.67, NDVI: r2=0.56, pb0.0001) and afternoon (NDII: r2=0.42, NDVI: r2=0.39, pb0.001) data. The diurnal
change in CWC also led to a statistically significant spectral change that was observed as a 4% decline in NDII
(pb0.005) or 2% decline in NDVI (pb0.0005). Our results show that the diurnal variation in CWC can be detected
for the irrigated orchards using simple spectral indexes derived from MASTER data, with higher sensitivity for
NDII than for NDVI as expected. The results also demonstrate the potential for remote sensing to improve crop
management and better understand plant physiological changes at field to regional scales.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Mapping vegetation water status with remote sensing provides
useful information to monitor plant drought stress (Peñuelas et al.,
1993), assess fire risk (Chuvieco et al., 2002), manage irrigation of ag-
ricultural crops (Ben-Gal et al., 2009), and improve our understand-
ing of the vegetation−climate relationship (Trombetti et al., 2008).
One of the biophysical variables best related to optical remote sensing
is vegetation canopy water content (CWC), which is the total amount
of water accumulated in leaves per unit area (Cheng et al., 2008;
Trombetti et al., 2008). Remotely sensed reflectance has been used
to estimate CWC for different vegetation types such as chaparral
shrubs (Serrano et al., 2000; Ustin et al., 1998), agricultural crops
(Yilmaz et al., 2008b), broad-leaf trees (Colombo et al., 2008), and a
mix of natural vegetation types (Ceccato et al., 2002).

Recently, Trombetti et al. (2008) produced a time series of CWC
maps for the continental USA on a monthly basis using Moderate Res-
olution Imaging Spectrometer (MODIS) data from the Terra satellite,
which showed good agreement with meteorological information

across vegetation types. These time-series CWC data were useful for
evaluation of seasonal variation in vegetation water status, but they
were not meant to investigate CWC changes over shorter time
periods, such as diurnal cycles. This diurnal CWC variation provides
valuable information about the partitioning of surface energy and car-
bon exchange between vegetation and atmosphere, which increases
our understanding of whether vegetation activities such as photosyn-
thesis and evapotranspiration peak in the morning or afternoon
(Wilson et al., 2003). Over the last decade, global networks such as
FLUXNET around the globe have provided extensive diurnal micro-
meteorological data for the study of carbon, water, and energy cycles
(Friend et al., 2007; Law et al., 2002; Wilson et al., 2002). The goal is
to integrate station-based data with high temporal resolution satellite
measurements in ecosystem models to resolve the daily cycles of car-
bon and water vapor exchanges. For example, Houborg and Soegaard
(2004) derived land surface and atmospheric products from morning
overpasses of MODIS and afternoon overpasses of the Advanced Very
High Resolution Radiometer (AVHRR) and coupled themwith an eco-
system model to compute diurnal ecosystem CO2 and water vapor
fluxes for an agricultural region. Airborne instruments provide the
possibility to test new approaches and validate satellite retrieval
algorithms since they can be flown under controlled conditions
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(e.g., acquisition time, illumination geometry, and platform altitude)
to detect diurnal changes in plant physiological status over experi-
mental field sites (Sepulcre-Canto et al., 2006; Suárez et al., 2008).

MASTER, the MODIS/ASTER airborne simulator, generates image
data with the spectral resolution acquired from MODIS and the
Advanced Spaceborne Thermal Emission and Reflectance Radiometer
(ASTER) and supports algorithm validation for the two spaceborne
instruments (Hook et al., 2001). It can be mounted on various plat-
forms to acquire imagery of different spatial resolutions and can be
combined with other sensors such as the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) (Dennison & Matheson, 2011). With-
in the last decade, MASTER data have been successfully used for land
cover classification that involves discrimination between vegetation
types (Li & Moon, 2004; Mollot et al., 2007), among other applica-
tions. Although MODIS and Landsat 5 Thematic Mapper (TM) spectral
bands have been investigated for estimating CWC (Cheng et al., 2008;
Yilmaz et al., 2008b), similar studies using MASTER images have not
been done, nor has anyone demonstrated detection of diurnal CWC
changes with MASTER data.

The estimation of CWC from remotely senseddata generally relies on
the leaf water absorption of radiation centered at 1240 nm, 1450 nm,
and 1940 nm in the near infrared (NIR, 700−1350 nm) and shortwave
infrared (SWIR, 1400−2500 nm) regions. Along with water-sensitive
bands, a reference band in a NIR region (700−900 nm) can be used
to construct spectral indexes that reduce the effect of variation in leaf
internal structure, dry matter content and illumination variability
(Ceccato et al., 2001). Common broadband spectral indexes developed
for foliar water content retrievals include the Normalized Difference
Infrared Index (NDII) (Hardisky et al., 1983) and the Normalized Differ-
ence Water Index (NDWI) (Gao, 1996). Recent studies, using data col-
lected from the Soil Moisture Experiment (SMEX) field campaigns,
have demonstrated the usefulness of NDII and NDWI for the estimation
of CWC and total vegetationwater content from satellite imagery (Chen
et al., 2005; Cheng et al., 2008; Jackson et al., 2004; Yilmaz et al., 2008a,
2008b). Some of them have also reported water content estimations
using the traditional Normalized Difference Vegetation Index (NDVI),
for which a long-term record is available from satellite instruments,
such as AVHRR and MODIS (Huete et al., 2002; Tucker et al., 2005).
Although this canopy greenness based index tends to correlate with
vegetation water content, it may not always be a good indicator of can-
opy water status as it is not directly related to canopy water absorption
(Ceccato et al., 2001; Chen et al., 2005; Jackson et al., 2004).

To the best of our knowledge, no studies have been able to attribute
diurnal changes in remotely sensed reflectance to diurnal dynamics of
plant physiological properties. A major obstacle to this measurement
is the impact of diurnal changes in the sun-target-sensor geometry on
reflectance, which is termed the bi-directional reflectance distribution
function (BRDF) effect (Meggio et al., 2008; Suárez et al., 2009). For
example, Vanderbilt et al. (1991) could not conclusively attribute diur-
nal reflectance changes of two walnut canopies to changes in plant
water status, primarily due to the BRDF effect. Suárez et al. (2008) relat-
ed diurnal airborne observations of the Photochemical Reflectance
Index (PRI) to several plant physiological indicators for water stress
detection over an olive orchard. However, the contribution of BRDF
remained mixed with that of water stress in the diurnal PRI changes.
In turn, Hilker et al. (2008) adjusted their analysis for the BRDF effect
and found that the strength of the observed relationship between
tower-based measurements of photosynthetic efficiency and corrected
canopy PRI over a conifer forest improved markedly (the r2 increased
from 0.37 to 0.82). The PRI was not originally designed to detect plant
water status but to measure sun-mediated structural changes in xan-
thophyll cycle pigments in the visible spectrum, unaffected by water.
Furthermore, those studies testing water–PRI relationships have been
restricted either to a small part within an orchard measured in nadir
positions or to a tower footprint area. Thus, it remains unclear whether
it is feasible to detect water-induced diurnal spectral signals in nadir

and off-nadir airborne data from canopies over larger geographic
areas, such as orchards of 10s of km2 with variable tree density, age,
and species composition.

The objective of this study was to evaluate the potential of using
MASTER data to detect diurnal CWC variation over agricultural
crops for a better understanding of plant water status dynamics and
crop water management. To detect subtle physiologically induced
diurnal spectral differences, we designed an experiment that covered
several pistachio and almond orchards of regularly spaced trees with
homogeneous canopies. Field measurements of CWC were collected
twice during the course of a day to support morning and afternoon
acquisitions of MASTER imagery. Spectral indexes derived from
MASTER data were used to relate observed spectral changes to
changes in CWC. This study establishes the basis for detecting diurnal
CWC variation over broad geographic areas using morning and after-
noon MODIS overpasses.

2. Materials and methods

2.1. Study site

The study site is a flat agricultural area located in western Kern
County, CA (35°29′45″ N, 119°40′2.6″ W) and comprises 10 km2 of
irrigated pistachio and almond tree orchards near Lost Hills, California
(Fig. 1). Three blocks of pistachios and eight of almonds (approximately
800×800 m each) were chosen to represent combinations of age,
variety, and irrigation schedule (Table 1). The rows are oriented in the
north−south direction. Six blocks (labeled as BE_002, BE_004,
BE_005, BE_006, BE_007, and BE_008 in Fig. 2) are divided into three
approximately equal-sized irrigation sets (west, middle, and east)
while blocks BE_009 and BE_011 are divided into four irrigation sets
and BE_010 into five sets. While trees in blocks BE_010 and BE_011
are diagonally spaced and exhibit different canopy densities every few
rows, trees in other blocks are parallel spaced and formmore homoge-
neous canopies. Scheduled irrigation is managed by Paramount Farm-
ing Company (Bakersfield, CA) and applied to all sets within each
block sequentially fromwest to east, except for the two pistachio blocks
BE_001 and BE_003 that are irrigated as a whole.

2.2. Sampling design

Due to practical constraints, our data collection was limited to two
plots in the same tree row per irrigation set in each of the eleven blocks.
Each plot represented a 3×3 tree area, which is approximately 324 m2.
The plot locationswere selected to span awide range of vegetation den-
sity, structure conditions, and vegetation water content based on NDII
and NDVI images from MASTER data acquired in 2009 under NASA's
Student Airborne Research Program (SARP). To reduce potential noise
in plot spectral signatures due to image misregistration and errors in
plot geolocation, each plotwas chosen as the central part of a larger spa-
tially homogeneous area.We located these tree plots using 1-meter res-
olution USGS Digital Orthophoto Quarter-Quadrangle (DOQQ) aerial
imagery and linked them to the locations in MASTER imagery.

2.3. Field data collection

Collecting timely field data is important to detecting and validating
diurnal CWC differences. Ideally, ground measurements should be
acquired synchronously with the flight. In our experiment this ideal sit-
uation was unattainable due to practical limitations in the field work
resources and field crew availability. Therefore, we conducted all leaf
sampling within a three-day period: one day before, on the flight day,
and one day after the flight. The weather conditions were stable during
such a short sampling period (see Table 2). Furthermore, our sampling
plan accounted for the irrigation schedule in these orchards. In particu-
lar, plots irrigated the day before the flight were sampled only on the
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flight day, and plots irrigated on the flight day were not sampled on the
following day, so that the water uptake by the time of MASTER overpass
would beminimal. Leaf sampling occurred from0900 h to 1100 h Pacific
Standard Time (PST) for morning measurements and 1300 h to 1500 h
PST for afternoon measurements. Twenty leaves were collected with
tree pruners (extendable to 4.3 m) from each of nine trees in the plot:
ten leaves on the sunny side and ten leaves on the shady side of the
outer canopy that would be visible from above. All leaf samples from
the nine trees were sealed in plastic zip-lock bags and kept in coolers
immediately after detaching from branches, avoiding direct contact
with the ice until fresh weight and leaf surface area measurements
could be made at a local laboratory provided by Paramount Farming
Company. The fresh weight (FW) of leaf samples was determined
using an Acculab VIC-303 Vicon Digital Balance (0.001 g). Leaf area
(A) was automatically calculated with up to 5% uncertainty from
scanned images of Epson Perfection V30 color scanners using Matlab
(MathWorks, Massachusetts, USA). This accuracy was determined by

scanning ten times a 50 cm2 calibration disc placed at different posi-
tions on a scanner. Dry weight (DW) was determined after all samples
were dried in an oven at 60 °C for 48 h (Chuvieco et al., 2002; Davidson
et al., 2006). The leaf water content was expressed as the equivalent
water thickness (EWT, g/cm2) as:

EWT ¼ FW−DW
A

: ð1Þ

To scale the water content from leaf to canopy level, the leaf area
index (LAI, m2/m2) over each plot was determined using digital
hemispherical photography. Twelve hemispherical photographs per
plot were acquired midway between trees under diffuse sunlight con-
ditions around sunset or sunrise, with six photos in the aisles and six
in the tree rows. The LAI was assumed constant during the seven day
period needed for taking all photos. All photographs were processed
with HemiView (Delta-T Devices Ltd., Cambridge, UK) to calculate

Fig. 1. Study site near Lost Hills, California, USA as seen from a MASTER image acquired in the morning of June 29, 2010. Band combinations for this false color composite are
MASTER bands 9 (872 nm), 13 (1667 nm), and 5 (658 nm). The black line with an arrow indicates the path and direction of MASTER instrument for both morning and afternoon
flight overpasses. Squares exhibiting relatively homogeneous vegetation cover are 800×800 m orchard blocks.
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LAI values. The LAI for a plot was determined as the average of twelve
LAI values calculated from each of the photographs. The CWC (g/cm2)
was calculated as:

CWC ¼ EWT� LAI: ð2Þ

EWT was measured in the morning and afternoon to examine the
diurnal differences. Due to the long process of CWC measurements

spanning from leaf sampling to leaf scanning, leaf weighing and
fisheye photography and time sensitivity of diurnal signals, we were
able to acquire complete CWC data for 28 plots out of the 66 designed
plots (33 irrigation sets×2 plots per set) in the strictly specified time
window. The acquired plots represented both pistachio and almond
with a range in EWT from 0.010 to 0.023 g/cm2 (mean±s.d.=
0.017±0.0027 g/cm2 for morning and 0.015±0.0029 g/cm2 for
afternoon). The range in LAI was 0.71 to 1.90 m2/m2 (mean±s.d.=
1.36±0.34 g/cm2) (Fig. 3).

2.4. Remotely sensed data

2.4.1. Image acquisition
The MASTER instrument was flown on a NASA DC-8 aircraft at an

altitude of 4000 m on June 29, 2010 from south to north (Fig. 1), and
passed over the study site twice under clear skies to acquire morning
(1050 h PST) and afternoon (1305 h PST) imagery. The acquisition
times, approximately 1 h before and 1 h after the solar noon (1200 h
PST), resulted in solar zenith angles (SZAs) of 19.8° and 18.5°, respec-
tively. These acquisitions had approximately symmetric solar geometry
around solar noon and therefore minimized the difference in amounts
of shadowwithin the row-structured canopies and the effect of diurnal
variation in SZA on canopy reflectance. The average air temperature on
the flight day was 27.3 °C (Table 2), which is 3.6 °C higher than the
10-year average for that day. The MASTER collected MODIS-like and
ASTER-like data in 50 channels but only the 25 reflective bands with
wavelength ranges from 0.4 to 2.5 μmwere used in this study. The sen-
sor records 716 pixels per scan line in cross-track direction with an
instantaneous field of view of 2.5 mrad. The field of view (FOV) is
85.92° and the maximum view zenith angle (VZA) is ±42.50°, with
negative angles representing scanning on the west side and positive
angles on the east side of the flight line.

2.4.2. Image preprocessing
The MASTER radiance data distributed in L1B level format were

atmospherically corrected to retrieve apparent surface reflectance
using FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes) that is a MODTRAN-4-based correction algorithm avail-
able in the ENVI software package (Exelis Visual Information Solu-
tions, Boulder, CO) (Matthew et al., 2003). The atmospheric correction

Table 1
Block characteristics of the orchards in the study area.

Block name Year planted Species Variety Irrigation system Row spacing (m) Tree height (m)

BE.001 2000 Pistachio (Pisctachio vera L.) Kerman Drip 5.8 1.5–2.5
BE.002 2000 Almond (Prunus dulcis) Butte, padre, ruby Fan jet 7.5 4.0–7.0
BE.003 2000 Pistachio (Pisctachio vera L.) Kerman Drip 5.8 2.0–3.0
BE.004 1999 Almond (Prunus dulcis) Monterey, nonpareil Drip and fan jet 7.5 2.5–7.0
BE.005 1999 Almond (Prunus dulcis) Monterey, nonpareil Fan jet 7.5 4.0–8.0
BE.006 1999 Almond (Prunus dulcis) Monterey, nonpareil Fan jet 7.5 3.0–6.5
BE.007 2000 Almond (Prunus dulcis) Monterey, nonpareil, wood colony Fan jet 7.5 3.5–7.0
BE.008 2006 Almond (Prunus dulcis) Monterey, nonpareil Fan jet 7.5 3.0–4.5
BE.009 1985 Pistachio (Pisctachio vera L.) Kerman Fan jet 7.5 2.0–5.0
BE.010 1988 Almond (Prunus dulcis) Carmel, price, nonpareil, padre Fan jet 5.8, 6.5 4.5–8.0
BE.011 1994 Almond (Prunus dulcis) Carmel, price, nonpareil, padre Fan jet 5.8, 6.5 4.0–8.0

Table 2
Weather conditions for the field sampling period. Data are acquired by the closest
California Irrigation Management Information System (CIMIS) station (CIMIS #146:
http://www.cimis.water.ca.gov/cimis/welcome.jsp) that is 800 m away in the west of
block BE.003.

Date Average air
temperature (°C)

Average wind
speed (m/s)

Average relative
humidity (%)

Precipitation
(mm)

6-28-2010 29.1 1.6 48 0
6-29-2010 27.3 1.5 48 0
6-30-2010 26 1.5 43 0

Fig. 2. Orchard square blocks (labeled as BE.001, BE.002,…, BE.011), 28 field plots (“+”

symbols) with valid ground data and 33 irrigation sets (white and gray polygons)
overlaid on a MASTER image of the study area. Note that some irrigation sets have
no plots with valid ground data but they are still included in this figure because show-
ing all irrigation sets will make it easier to compare this study to other relevant studies
that may have valid data for different plots.
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for both images was based on a mid-latitude summer atmospheric
model and rural aerosol model. The retrieved reflectance images were
georeferenced using input geometry information distributed with the
raw data, which generated a spatial resolution of 5.6 m for themorning
image and 5.8 m for the afternoon image. The afternoon image was
resampled to the spatial resolution of the morning image (5.8 m) by
pixel aggregation, which averages all the 5.8-m-pixel values that con-
tribute to the output 5.6-m-pixel. The alignment errors between two
images were within one pixel. Both morning and afternoon MASTER
images were registered against the 1-meter resolution DOQQ image
using a pure translation estimatedwithmanually chosen corresponding
points and nearest neighbor interpolation. The registration accuracy
achieved this way was sufficient for our hypothesis tests to yield statis-
tically significant results presented in Section 3.1.

Due to the wide scan angle of MASTER and the diurnal variation in
solar position, both morning and afternoon images had exhibited obvi-
ous cross-track brightness gradients (Fig. 4). The VZA varied from −9°
to 24° as the MASTER instrument scanned each line in the cross-track
direction. The morning image appears brighter on the west side and
darker on the east side in a false color composite (Fig. 1) and the after-
noon image shows the opposite trend (image not shown), which dem-
onstrates the BRDF effect (Beisl, 2001; Sandmeier & Itten, 1999). This
effect increases as VZA increases until it reaches the hot spot area
(i.e., VZA=SZA), preventing an effective comparison of morning obser-
vations to afternoon observations of the same targets at off-nadir
positions.

To minimize the spectral contribution from the BRDF effect, we
followed a class-wise empirical correction approach proposed by
Kennedy et al. (1997). This method models the VZA-dependent bidi-
rectional reflectance factor (BRF) (i.e., cross-track brightness gradi-
ent) per land surface type and then normalizes off-nadir BRFs to the
nadir view. Instead of the iterative optimization classification in
Kennedy et al (1997), a spectral-index-based method was used to
classify the images into broad ‘BRDF classes’. By applying NDVI
thresholds to the uncorrected morning image, the study area was
classified into three canopy structural types: non-vegetation, sparse
vegetation, and dense vegetation. Furthermore, pixel-members from
the same column for each class were averaged to derive BRFs as poly-
nomial functions of their common VZA. For each class, a third-order

polynomial model of the BRF was found to account for the hot spot
effect better than second-order polynomials that were used in the
cases of no hot spot effect (all VZAs were less than the SZA)
(Kennedy et al., 1997; Schiefer et al., 2006). The BRFs for the soil
class were not modeled. The brightness gradients were removed by
dividing all reflectance values by a class-specific multiplicative com-
pensation factor that is defined by Kennedy et al. (1997) as a ratio
of modeled BRFs for all VZAs to the BRF at nadir positions (Schiefer
et al., 2006). Fig. 5 demonstrates that our BRDF correction has mark-
edly reduced the large diurnal cross-track variation in morning and
afternoon reflectance data, which was obvious in Fig. 4.

The spectral signatures of each plot were extracted by averaging
the BRDF-corrected image spectra in a 3×3 pixel window centered
at the plot center. Using the mean spectra is known to reduce noise
in comparing field-based and image-derived quantities (see also
Section 2.2). These signatures were used to calculate spectral index
values for further statistical analyses. Since the water band for another
commonly used water index NDWI is unavailable for MASTER, this
study used the NDII water index and included the widely used green-
ness index NDVI as a reference. The MASTER-derived NDII is calculated
as:

NDII ¼ Rnir−Rswir

Rnir þ Rswir
¼ band 9−band 13

band 9þ band 13
ð3Þ

and the NDVI is calculated as:

NDVI ¼ Rnir−Rred

Rnir þ Rred
¼ band 9−band 5

band 9þ band 5
: ð4Þ

The center wavelengths for MASTER bands 5, 9, and 13 are
658 nm, 872 nm, and 1667 nm, respectively. The two NDII bands in
MASTER are also available in MODIS on board the Terra and Aqua sat-
ellites and have already been applied to large scale monitoring of
drought stress (Fensholt & Sandholt, 2003).

2.4.3. Statistical tests
A paired Student's t-test in R version 2.12.0 (R Development Core

Team, 2010) was used to statistically test the hypothesis that the dif-
ference between mean morning and afternoon CWC values is positive
against the null-hypothesis of no difference. This test was applied for

Fig. 3. A scatter plot of leaf area index (LAI) versus equivalent water thickness (EWT)
collected from the study site. Morning (red symbols) and afternoon (blue symbols)
EWT measurements were available for each of the 28 field plots. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 4. Horizontal profiles of reflectance extracted from uncorrected morning and after-
noon MASTER images for a cross-track transect passing through blocks BE_006 and
BE_007 as shown in Fig. 2. Red, green and blue lines represent cross-track variation
in reflectance of uncorrected morning (solid lines) and afternoon (dashed lines) im-
ages for MASTER bands 13, 9 and 5, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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three types of CWC: the field-measured CWC and the CWC estimated
by the MASTER-derived NDVI and NDII. Since the results of a paired
t-test may be affected by substantial deviation of the underlying sam-
ple distribution from a normal distribution, we also applied a permu-
tation test (Moore & McCabe, 2006). We ran the permutation test in R
and used 9999 permutations, thus allowing an approximation of the
p-value with accuracy up to 10−4. The one-sided test p-value was
conventionally approximated as the proportion of permutations in
which the diurnal difference in mean CWC was not positive, where
the term “diurnal difference” means morning CWC minus afternoon
CWC. The statistical significance of correlations between CWC and
MASTER-derived NDVI and NDII was evaluated using bootstrap confi-
dence intervals. A correlation was considered significant if a 95% con-
fidence interval of the correlation coefficient did not include 0.0.

3. Results

3.1. Relationship between field-measured CWC and MASTER-derived
vegetation indexes

Fig. 6A shows a histogram of the CWC difference values measured
for the 28 field plots. A paired t-test supports that the afternoon CWC
(0.21±0.047 kg/m2 for mean±s.d.) was significantly lower than the
morning CWC (0.23±0.044 kg/m2) (pb0.0001) and the permutation
test confirmed the significance (p=0.0001).

The MASTER-derived NDII and NDVI for morning, afternoon, and
combined times were found significantly correlated with the field-
measured CWC (Fig. 7). Overall, the correlation of NDII to CWC was
stronger than NDVI to CWC, as expected based on differences in sensi-
tivity to water. For morning data, NDII correlated to CWC with an r2

of 0.67 (pb0.0001) and NDVI correlated to CWC with an r2 of 0.56
(pb0.0001). The correlations were weaker for afternoon data with an
r2 of 0.42 (pb0.0005) for NDII and 0.39 (pb0.001) for NDVI. The boot-
strap confidence interval analysis also indicated all correlations
between MASTER-derived NDII and NDVI and field-measured CWC
were statistically significant.

An analysis of the covariance (ANCOVA) shows the regression
models, derived from the morning data and the afternoon data sepa-
rately, had no differences in slopes (NDII: p=0.56, NDVI: p=0.88)
and only marginal differences in intercepts (NDII: p=0.07, NDVI: p=

0.08). This allowed us to generate a single CWC~NDII or CWC~NDVI
model by combining morning data and afternoon data (Fig. 7, NDII:
r2=0.53, pb0.0001; NDVI: r2=0.47, pb0.0001). Using the regression
models derived from combined data, the ranges of estimated diurnal
differences were narrower than that of field-measured diurnal differ-
ences. However, for most plots the estimated diurnal differences were
still positive (Fig. 6B and C). The estimated afternoon CWC was signifi-
cantly lower than the estimated morning CWC for both NDII (pb0.005
for both tests) and NDVI (pb0.0005 for both tests). The diurnal water
loss in the canopies for the field plots was measured as ~9% (morning
vs afternoon: 0.23 kg/m2 vs 0.21 kg/m2) of respective CWC values
and resulted in detectable spectral changes as 4% in NDII (morning
mean NDII=0.24±0.069; afternoon mean NDII=0.23±0.069) and
2% for NDVI (morning mean NDVI=0.64±0.082; afternoon mean
NDVI=0.63±0.077).

3.2. Mapping CWC using spectral indexes

After applying the NDII–CWC relationship obtained for combined
data to respective morning and afternoon images, the spatially explic-
it CWC estimates are displayed as maps in Fig. 8A and B, and their dif-
ference is displayed in Fig. 8C. The two CWC maps show similar
spatial patterns across irrigation sets within most blocks (BE_002,
BE_004, BE_006, BE_009, BE_010, and BE_011). On the difference
map (Fig. 8C), positive differences represent declines in CWC during
the course of a day and are mostly seen for blocks with dense cano-
pies (BE_002, BE_004, BE_005, BE_006, BE_007, and on the eastern
half of BE_009). This is supported by the irrigation-set-level diurnal
differences in CWC (Table 3), which are generally greater for these
blocks than for other blocks.

Fig. 9 shows morning CWC, afternoon CWC, and their difference
derived by applying the NDVI–CWC relationship to respective NDVI
images. The three images show similar spatial patterns to Fig. 8 but
have less contrast in either CWC or CWC difference. The CWC esti-
mates derived from NDVI images are generally lower than those
from NDII. The CWC differences estimated by NDVI were mostly
higher than those estimated by NDII for blocks with sparse canopies
(BE_001, BE_003, and BE_008) and with a more irregular planting
structure (BE_010 and BE_011) (Table 1).

At the irrigation-set level, the MASTER-derived CWC of most cano-
pies decreased over the diurnal cycle, which is supported by significant-
ly lower afternoon CWC values thanmorning CWC values estimated by
either NDII or NDVI (pb0.0001 for the paired t-test and p=0.0001 for
the permutation test). We did not stratify our analysis by irrigation set
due to insufficient sampling.

4. Discussion

This study investigates diurnal variation in vegetation water status
via CWC derived from remotely sensed data. The diurnal CWC varia-
tion was driven by changes in leaf EWT since there was little change
in LAI during the sampling period. Leaf angle is an important factor in
deriving canopy reflectance variation (Ollinger, 2011), but it was not
likely to change substantially at image acquisition times while the
canopies were exposed to similar solar radiation (Rosa & Forseth,
1996). The water status in trees changes over the course of a day as
a result of water loss dynamics through transpiration (Breda et al.,
2006; Simonneau et al., 1993). Irrigation did not change between
the times of flight overpasses (1050 h PST and 1305 h PST) and the
water uptake from soil to leaves was expected to approximate the
atmospheric demand. Crop water use can be determined from mea-
surements of evapotranspiration (ET) that include the loss of water
from canopies through transpiration and evaporation from soil sur-
faces (Ham et al., 1990; Jung et al., 2010). In these well-irrigated
orchards, water supply was sufficient to avoid potential yield loss.
The fully developed canopies, especially those of higher density,

Fig. 5. Horizontal profiles of reflectance extracted from corrected morning and afternoon
images for the same transect as shown for Fig. 4. Red, green and blue lines represent
cross-track variation in reflectance of corrected morning (solid lines) and afternoon
(dashed lines) images for MASTER bands 13, 9 and 5, respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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should be at high transpiration rate (1 h before and after mid-day)
and it was more likely for transpiration to play an important role in
ET changes than for soil evaporation (Sauer et al., 2007). The water
decline in the afternoon as observed from ground and airborne data
suggested that the orchards were not able to maintain a constant
amount of canopy water. Therefore, canopy water loss during the
time that elapsed between image acquisitions could be explained by
an increase in ET from morning to afternoon. The incident solar radi-
ation peaks at solar noon on a clear day, but ET that is driven by inci-
dent solar radiation and temperature lags behind and reaches its
maximum in the mid-afternoon (Choudhury & Idso, 1985; Reicosky
et al., 1982; Weber & Ustin, 1991; Wilson et al., 2003). This observa-
tion is consistent with the standard ET (ETo) value recorded by the
nearest CIMIS station (Fig. 10) as 0.73 mm/h at 1100 h PST with an
air temperature of 31.6 °C and 0.81 mm/h at 1300 h PST with an air
temperature of 34.2 °C (downloaded from http://www.cimis.water.
ca.gov/cimis/data.jsp). For the 28 field plots, we observed significant
diurnal differences in CWC both physiologically and spectrally. The
diurnal spectral changes caused by a 9% change in CWC over the
experimental site are sufficiently significant to be detected using air-
borne remotely sensed imagery. We also observed a similar behavior
in the data from June 28 (9 field plots) and June 29 (15 field plots)

separately, but the stratifying analysis by sampling day would have
greatly decreased the variability in tree characteristics and therefore
weakened our findings.

In general, remote detection of diurnal changes in CWC is chal-
lenging because the observed difference can be attributed to a num-
ber of confounding factors, such as variation in the solar position,
physiological status, growth stage, atmospheric conditions, topogra-
phy, shadowing, and imaging parameters. Furthermore, many studies
have pointed out that remote sensing images must be corrected for
any BRDF effect to meaningfully interpret the apparent temporal var-
iation in vegetation indexes (Galvao et al., 2004, 2011; Los et al.,
2005). This orchard study minimized a number of target geometry
factors because of consistent growth stage of the trees and flat terrain.
Also, the dual airborne flights conducted within a small time window
(2 h) under clear-sky conditions minimized the variation in solar illu-
mination intensity and atmospheric conditions. Our target signature
was still found to originate from the spectral response to diurnal
changes in physiological status although it was influenced by varia-
tions in VZA and SZA. We minimized these variations by scheduling
the two flights so that the overpass times were symmetric about
solar noon and choosing the North–South flight directions parallel
to the row orientation, and conducting an empirical BRDF correction

Fig. 6. Histograms of diurnal differences in CWC for the 28 field plots with reference to theoretical normal distributions (smooth lines). These differences between morning and
afternoon CWC values are (A) measured in the field, (B) estimated by MASTER-derived NDII, and (C) estimated by MASTER-derived NDVI. Positive difference values indicate
declines in diurnal CWC. Data in the histograms all passed the Shapiro–Francia normality test (p>0.05) as closely matched to normal distributions.

Fig. 7. Relationships between field-measured CWC and MASTER spectral indexes (A) NDII and (B) NDVI for the 28 field plots with valid ground data in the morning (circles) and
afternoon (pluses).
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of the diurnally acquired images for the BRDF effect. This flight design
would not minimize the BRDF effect but made it easier to understand
the effect and to run image post-processing. It also precluded the cor-
rection for the influence of diurnal solar illumination variability.

Although using normalized difference indexes, such as NDII and
NDVI, to estimate CWCpartially compensates for the diurnal differences

in imaging conditions, it does not effectively remove the BRDF effect.
For example, an earlier work by Cheng et al. (2011) shows that CWC
maps derived fromuncorrectedNDII data exhibit cross-track brightness
gradients due to the BRDF effect. They found this effect was weak in
both morning and afternoon images but was amplified on the CWC dif-
ference map due to the opposite trends (Fig. 4) in the morning and af-
ternoon images. After the BRDF correction described in Section 2.4.2,
the morning reflectance data were comparable in magnitude to the af-
ternoon reflectance data (Fig. 5) and the cross-track gradients
disappeared (Figs. 8 and 9). Thus, the BRDF correction helped separate
thewater-induced spectral response fromdirectional spectral variation.
Despite the removal of cross-track brightness gradients, we did not ob-
serve an increase in r2 for the CWC–NDII or CWC–NDVI relationship due
to an insufficient number of samples at off-nadir positions (e.g. BE_007
and BE_009) for the evaluation (Fig. 2). Suárez et al. (2008) reported
one of few airborne observations of diurnal vegetation dynamics in
the literature and found that canopy PRI was sensitive to diurnal
changes in such physiological indicators ofwater stress as stomatal con-
ductance, stem water potential, steady-state fluorescence, and crown
temperature. They determined three independent regression models
without BRDF correction for PRI data acquired at 07:30, 09:30, and
12:30 GMT, but did not provide a universal model that fit the pooled
PRI and physiological data. We compared their diurnal physiological
data to canopy PRI from the three regression models, and suspect
their systematic offset of PRI with time of day indicates a BRDF influ-
ence. This example illustrates the importance of BRDF correction in an-
alyzing vegetation dynamics with diurnal remote sensing data.

The spectral indexes NDVI and NDII underestimated the ~9% field
measured diurnal change in CWC by different amounts: the NDII
showed a 4% change and the NDVI detected 2% change. Indeed, the
CWC correlated more strongly to the water sensitive index NDII
(r2=0.53) than the greenness sensitive index NDVI (r2=0.47). The
NDII is directly related to the strength of water absorption in the
SWIR region and is more sensitive to the contrast in water content
between sparse canopies and dense canopies (Fig. 8). The weaker cor-
relation of NDVI than water indexes with canopy water absorption
was also found by Cheng et al. (2006) at agriculture and forest sites.
The lower correlation for NDVI is consistent with the fact that the
chlorophyll content represented by NDVI may not always be well
related to canopy water content (Ceccato et al., 2001). Nevertheless,
the NDVI–CWC scatter plot in Fig. 7B has more data points near the
upper end of the regression line, which indicates lower sensitivity
of NDVI to CWC changes for plots with NDVI higher than 0.65
although the LAI measurements for our study are generally low
(LAI: 0.7 to 1.9). This saturation is also supported by the generally

Fig. 8. CWC maps derived from MASTER NDII data. Images (A) and (B) represent CWC produced by applying the combined model in Fig. 7A to morning and afternoon NDII images,
respectively. Greater values in scale bars represent wetter orchard canopies. Image (C) displays the pixel-wise difference between (A) and (B) and represents diurnal CWC varia-
tion, with positive values indicating declines in diurnal CWC. Non-vegetated areas are excluded from CWC analysis and always shown in red. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Summary of diurnal differences in MASTER-derived CWC using NDII and NDVI. Each
value in the table is obtained by averaging the difference between morning and CWC
and afternoon CWC over all pixels in the irrigation set area. The first two columns
are absolute CWC differences and the last two columns are CWC differences relative
to morning CWC values.

Irrigation SET CWC
difference
by NDII
(kg/m2)

CWC
difference
by NDVI
(kg/m2)

Ratio of CWC
difference to
morning CWC by
NDII (%)

Ratio of CWC
difference to
morning CWC by
NDVI (%)

BE.001 0.0012 0.0013 0.48 0.81
BE.002.SET.1 0.0076 0.0074 3.05 2.99
BE.002.SET.2 0.0159 0.0128 6.56 5.17
BE.002.SET.3 0.0183 0.0138 7.37 5.49
BE.003 0.0008 0.0012 0.17 0.59
BE.004.SET.1 0.0086 0.0077 3.33 3.06
BE.004.SET.2 0.0125 0.0116 4.94 4.63
BE.004.SET.3 0.0118 0.0121 4.10 4.45
BE.005.SET.1 0.0157 0.0104 5.34 3.48
BE.005.SET.2 0.0121 0.0088 4.05 3.09
BE.005.SET.3 0.0132 0.0086 4.71 3.14
BE.006.SET.1 0.0091 0.0090 3.81 3.72
BE.006.SET.2 0.0083 0.0097 3.38 4.08
BE.006.SET.3 0.0138 0.0125 5.46 5.08
BE.007.SET.1 0.0107 0.0097 3.95 3.66
BE.007.SET.2 0.0091 0.0078 3.22 2.81
BE.007.SET.3 0.0062 0.0059 2.12 2.19
BE.008.SET.1 0.0047 0.0062 2.47 3.32
BE.008.SET.2 0.0048 0.0050 2.46 2.58
BE.008.SET.3 0.0059 0.0062 3.17 3.24
BE.009.SET.1 0.0109 0.0114 5.21 5.48
BE.009.SET.2 0.0090 0.0105 4.04 4.84
BE.009.SET.3 0.0163 0.0127 6.74 5.43
BE.009.SET.4 0.0121 0.0113 4.90 4.89
BE.010.SET.1 0.0060 0.0028 2.46 0.97
BE.010.SET.2 0.0031 0.0018 0.87 0.59
BE.010.SET.3 0.0008 0.0009 −0.21 0.19
BE.010.SET.4 −0.0001 0.0016 −0.78 0.46
BE.010.SET.5 −0.0017 0.0013 −1.37 0.42
BE.011.SET.1 −0.0009 0.0024 −0.91 0.94
BE.011.SET.2 −0.0022 0.0028 −1.65 1.05
BE.011.SET.3 −0.0001 0.0040 −0.50 1.64
BE.011.SET.4 0.0025 0.0059 0.57 2.59
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lower magnitude in the NDVI-derived CWC maps for dense canopies
(Fig. 9).

The orchards were mostly irrigated from west to east within each
block using block-specific schedules. We did not find a significant
relationship between the number of days since irrigation and CWC
or CWC differences (data not shown). Only a few blocks (BE_002,
BE_004, and BE_006), indicated a systematic CWC gradient from
west to east due to the difference in the number of days since irriga-
tion. Our data were collected in the middle of growing season when
the crops were being well irrigated to avoid yield loss and water sup-
ply was sufficient, which could explain why the water status was less
affected by the irrigation schedule. In addition, blocks BE_010 and
BE_011 on the CWC maps (Fig. 8A and B) showed stripe patterns in
a north–south direction that were due to different planting strategies
across tree rows.

For some pixels, their soil background was visible to the sensor and
therefore the diurnal changes in soil moisture might have contributed
to the remotely sensed CWC change. To test the effect of variation in

soil moisture on NDII and NDVI, we ran the commonly used radiative
transfer model PROSAIL (Baret et al., 1992; Jacquemoud et al., 2009),
which couples the leaf optical properties model PROSPECT (Féret
et al., 2008; Jacquemoud & Baret, 1990) and the canopy reflectance
model SAIL (Verhoef, 1984; Verhoef et al., 2007). Fig. 11A shows a series
of soil reflectance spectra with variable moisture content, which is rep-
resented in PROSAIL by a soil wetness coefficient ρsoil. The two diurnal
soil spectra collected in the study site corresponded to a decline in
ρsoil by only 0.04 (Fig. 11A). Although both NDII and NDVI varied as a
function of soil wetness, the small diurnal change in soil wetness led
to only 0.1% to 0.3% changes in NDII and 0.3% to 0.6% changes in NDVI
(Fig. 11B). Thus, our simulations combined with field spectral informa-
tion provide evidence that the observed changes in MASTER-derived
NDII and NDVI were mostly attributed to the diurnal variation in CWC
rather than in soil moisture. In addition, the diurnal variation observed
with MASTER spectral indexes was consistent with the CWC variation
observed in our groundmeasurements. Furthermore, the weaker influ-
ence of soil wetness on NDII and greater sensitivity of NDII to CWC
reinforced higher reliability of detected diurnal CWC variation by NDII
than by NDVI. Since the influence of soil on diurnal NDII variation was
close between two canopy scenarios (Fig. 11B), we are more confident
that the higher CWC differences for dense canopies than for sparse can-
opies (Table 3) resulted from stronger signals from vegetation. Never-
theless, some practical circumstances such as recent rain events and
unstable irrigation conditions during the day should be avoided for ef-
fective detection of diurnal CWC variation. Considering the challenge
of removing the confounding effects of soil and other factors (e.g., sen-
sor noise), this research was not designed to determine the minimum
amount of diurnal CWC change that can be detected with airborne re-
mote sensing, but to examine whether a significant change in diurnal
CWC observed on the ground could be detected with the MASTER in-
strument onboard an airborne platform. If the study is successfully
scaled up to satellite level using MODIS data, the detection of diurnal
CWC variation would benefit greatly from vegetation index achieve-
ments in the MODIS community (Cheng et al., 2007; Huete et al.,
2002; Trombetti et al., 2008; Zarco-Tejada et al., 2003).

While aerial remote sensing has been successfully used to quantify
seasonal differences in CWC caused by drought stress (Asner et al.,
2004), it was unclear whether it could also be used to detect diurnal
CWC variation. This study demonstrates the capability of airborne
remote sensing for detecting subtle changes in CWC that provide
important implications for detecting water deficit at an early stage
in both agricultural and natural ecosystems. Our research may be
helpful for agricultural management to develop an early warning sys-
tem of crop water stress using time series of airborne or spaceborne

Fig. 9. CWCmaps derived fromMASTER NDVI data. Images (A) and (B) represent CWC produced by applying the combined model in Fig. 6B to morning and afternoon NDVI images,
respectively. Greater values in scale bars in (A) and (B) represent wetter orchard canopies. Image (C) displays the pixel-wise difference between (A) and (B) and represents diurnal
CWC variation, with positive values indicating declines in diurnal CWC. Non-vegetated areas were excluded from the CWC analysis and always shown in red. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Diurnal patterns of hourly standard ET data from the closest CIMIS station
(CIMIS #146) for the leaf sampling period. Two arrows above the curves denote the
times of MASTER flight overpasses.
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observations. Plant physiologists use plant water potential and rela-
tive water content (RWC) as two key metrics of plant water content
to characterize water stress (Burghardt & Riederer, 2003; Hunt &
Rock, 1989). The two variables are interrelated since zero water
potential corresponds to a RWC of 100% (full leaf turgor), which
refers to the maximum amount of water a leaf can hold (Nobel,
2009). Because leaves generally do not have full turgor, it is difficult
to systematically estimate RWC from canopy reflectance. Therefore,
CWC is preferred in the remote sensing community because of its
direct relationship with canopy optical properties based on the
Beer–Lambert Law and its flexibility for field sampling (Hunt &
Rock, 1989; Hunt et al., 1987; Sims & Gamon, 2003).

We chose orchards as the experimental site but our findings could
be applied to other agricultural crops and to natural vegetation. Some
important ecological studies have shown the usefulness of remote
estimates of CWC for detecting forest drought stress (Asner et al.,
2004) and mapping the distribution of biological invasion (Asner &
Vitousek, 2005; Underwood et al., 2003). Detection of subtle CWC
changes would also benefit the prediction of susceptibility to wildfire
(Ustin et al., 1998). As an absolute measure of water quantity, CWC
can be integrated with water flux data to study water cycling in
terrestrial ecosystems. The observed diurnal CWC variation from the
aircraft platform also indicates that sub-daily observations of geosta-
tionary satellites such as Meteosat (Govaerts & Lattanzio, 2008) from
different angles for a specific location may carry detectable spectral
changes due to diurnal vegetation activities. Caution should be
taken while using the diurnal observations to represent angular
observations for studying vegetation dynamics. Future work is need-
ed to investigate the diurnal CWC variation in different seasons and
for more vegetation types. This study also opens new research ave-
nues in sub-daily regional mapping of CWC over different ecosystems
using high temporal resolution satellite data, such as daily rolling
16-Day MODIS Nadir BRDF-Adjusted Reflectance (NBAR) data (Ju et
al., 2010; Shuai, 2010). Since MODIS acquires morning observations
from Terra and afternoon observations from Aqua, our findings
could be evaluated at the satellite level if the quality of daily rolling
data from two separate satellites instead of a combination of both sat-
ellites is acceptable.

5. Conclusion

This study provides an evaluation of airborne imagery for detecting
diurnal variation in canopy water content over almond and pistachio
orchards. A significant decline in CWC (9%)was observed on the ground
in response to daily ET in these orchard canopies.We established signif-
icant relationships between field-measured CWC and two MASTER-
derived simple spectral indexes NDII and NDVI for both morning and
afternoon data. The correlations of measured CWC with NDII were
stronger than those with NDVI. More importantly, we were able to
detect a statistically significant diurnal difference in CWC using both
NDII and NDVI. The decline in CWC from morning to afternoon was
stronger for sampling blocks with dense canopies thanwith sparse can-
opies. However, to achieve this level of accuracy the MASTER imagery
had to be corrected for the BRDF effect, especially for diurnal assess-
ment. This research provides useful information for early detection of
water stress in crops or other plants with remote sensing data. The
strategies for data collection and data processing hold promise for
remote detection of diurnal variation in other vegetation physiological
variables.

The diurnal CWC maps may serve as remote sensing inputs for the
operation of ecosystemmodels with a sub-daily time step. Our results
on the canopy water content could be integrated with evapotranspi-
ration and soil moisture information to aid crop water management
and to better understand the water fluxes in agricultural and natural
ecosystems.
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