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ABSTRACT 
 
Precision agriculture requires high spectral and spatial resolution imagery for advanced analyses of crop and soil 
conditions to increase environmental protection and producers' sustainability. GIS models that anticipate crop responses 
to nutrients, water, and pesticides require high spatial detail to generate application prescription maps. While the added 
precision of geo-spatial interpolation to field scouting generates improved zone maps and are an improvement over 
field-wide applications, it is limited in detail due to expense, and lacks the high precision required for pixel level 
applications. Multi-spectral imagery gives the spatial detail required, but broad band indexes are not sensitive to many 
variables in the crop and soil environment. Hyperspectral imagery provides both the spatial detail of airborne imagery 
and spectral resolution for spectroscopic and narrow band analysis techniques developed over recent decades in the 
laboratory that will advance precise determination of water and bio-physical properties of crops and soils. 
  
For several years, we have conducted remote sensing investigations to improve cotton production through field 
spectrometer measurements, and plant and soil samples in commercial fields and crop trials. We have developed 
spectral analyses techniques for plant and soil conditions through determination of crop water status, effectiveness of 
pre-harvest defoliant applications, and soil characterizations. We present the most promising of these spectroscopic 
absorption and narrow band index techniques, and their application to airborne hyperspectral imagery in mapping the 
variability in crops and soils. 
 
Keywords: hyperspectral imagery, site-specific farming, narrow-band indexes, image spectroscopy    
 

1.   INTRODUCTION 
Precision agriculture is a management strategy with the potential to integrate varied datasets through information 
technology in developing crop production decisions1. The availability of GIS to aggregate and model yield data and 
crop status data collected near real time will promote increased efficiencies, and reduced producer costs and impact on 
the environment. In developing decision support tools for precision agriculture, the enhanced information for 
management within the field adds to an already complex decision process. Jones et al.2 explore this complexity in 
structuring the information and decisions, while acknowledging there is imprecision within the process. 
 
Moran et al.3 in a review of the state of precision crop management only a few years ago revealed some encouraging 
areas for the exploitation of remote sensing and the areas of severe limitation of existing systems.  The expectation for 
remote sensing's greatest role is inputs to decision support systems for agronomic model calibration and validation. A 
future role for hyperspectral imagers is in crop diagnosis and soil physical and chemical characteristics.  While remote 
sensing will not replace the soil and plant sampling entirely, the combination of imagery and local modeling and 
validation will improve producer efficiency if the soil and plant maps are provided within a short time period, near 24 
hours for some applications such as irrigation4. Prediction of yield, plant stress, nutrient deficiencies, weed and insect 
infestations require timely applications of water, fertilizers and pesticides5. Combined with meteorological data, remote 
sensing on a region and local level will improve forecasting of the response of crops to management practices. 
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Unfortunately, advances in precision management are inhibited by the limitations in current satellites and airborne 
sensors:  coarse spatial and spectral resolution, inadequate frequency of coverage, and long turn-around from acquisition 
to delivery. After several attempts from the commercial sector, the situation has changed little. The internet has greatly 
improved the potential speed of delivery to the grower, but the image sources remain limited. Both timeliness and 
expense remain the principal explanations for the lack of adoption. The economic scale to support the acquisition and 
analyses is for high value and large producers.  

1.1  Spectroscopy techniques with hyperspectral data 
With the high spectral resolution of hyperspectral imagery and field spectrometers, the basic spectroscopy techniques 
applied in lab analysis of organic and mineral spectra can be applied to agricultural landscapes in developing the layers 
for modeling the response of management practices by crops. Hyperspectral data also provides the most elemental form 
for convolving broad-bandwidths for simulating existing satellites, or determining the specific bands and widths for 
tuned-filter instruments. 
 
Statistical relationships between the spectral region and variability in the image are often used to reduce data density 
through identifying specific bands that produce the greatest information content. Principal Component Analysis6, 7, 
canonical analysis, and maximum-likelihood and others do not necessarily discover the physical rationale. From the 
determination of the most illustrative bands for the crop and soil characteristics, many two and three band indexes were 
developed using the broad-band satellite data, and were adapted to specific narrow spectral regions within the 
hyperspectral signature8. Band ratios have the advantage, when normalized, to improve comparability among band 
depths while reducing the variation not due to features of interest, but due to canopy and leaf geometry and sun angle. 
The most common techniques include Normalized Difference Vegetation Index (NDVI)9, Soil Adjusted Vegetation 
Index (SAVI)10  and many more shown in Table 1 after Zarco-Tejada et al.11. 
 
In controlled laboratory analyses, instruments produce smooth, high resolution spectra. As airborne and satellite imagers 
increase stability, the spectral quality for use in derivates and other shape related techniques will increase. Meanwhile, 
techniques for reducing the noise, such minimum noise fraction greatly improve derivative and band-depth 
determinations, although at the expense of sensitivity to subtle narrow band variation12. NIRA and principal component 
determination of the differences within the region of the spectra are standard techniques used in the laboratory6, 13. 
Mineral and vegetation identification often employs the process of matching spectra from a library14. The process of 
Continuum Removal15 divides the spectrum by the background continuum, that normalizes absorption depths and 
shapes, making them easily comparable (Table 1). By normalizing both the example and target spectral, the variability 
in sun angle, surface geometry can be eliminated14. Tetracoder16 and commercial software exploit this technique for 
mineral and plant biochemical identification17, 18. An alternative to fitting a spectrum to a library for identification is to 
model the shape of the absorption, then use the model parameters to predict the vegetation and soil composition or 
condition. One shape, the inverted Gaussian19, 20 fits the reflectance curve (Table 1). An advantage of the Gaussian over 
polynomial fitting is the few parameters used to describe the absorption, and which can be related to the identification 
and abundance of the absorber. Multiple Gaussian functions are used in series to model the shape of combination 
absorptions21. 

1.2  Techniques in identifying soil characteristics 
Each technique above has its strengths in soil classification, mineral, moisture, and nutrient determinations. Here are 
just few examples applying the techniques to determine soil types and condition. Early investigations using laboratory 
spectra determined moisture, clay, organic matter and iron contents were the primary chromophores22-25. Recent work 
by Chang et al.6 and Shepherd and Walsh26 showed PCA and cluster analyses of laboratory spectra can separate Total C, 
total N, moisture, cation-exchange capacity (CEC), 1.5 MPa water, sand, silt, and extractable Ca and other soil 
components for large numbers of soil samples over diverse ecological regions.  
 
Several investigators have demonstrated classification of tonal differences related to soil types through simple 
techniques as density slicing to classify soil types or characteristics using aerial photography27, multispectral lab  data28 
and SPOT imagery29. In the right circumstances, multi-spectral photography and satellite imagery has been useful in 
differentiating organic matter and clay contents based on the tonal differences in the images30, 31. Fontes and Carvalho32 
using spectral conversion to Munsell colors demonstrated the relationship between iron content and specific absorptions 
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Table 1. Soil and Vegetation indexes for mineral and biochemical estimation calculated from multispectral and hyperspectral 
imagery. 
 

Spectral Absorption Metrics Equation Reference 

σ = shape parameter as defined by the 
inverted-Gaussian curve-fit model 
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Band depth Normalized on Center 
(BNC) cDBDnD /=  Kokaly and Clark (1999)17 

Band depth Normalized on Area (BNA) ABDnD /=  Curran et al. ( 2001)18 
 
Structural Vegetation  Indexes Equation Reference 

Normalized Difference Vegetation 
Index (NDVI) NDVI = (RNIR - Rred )/(RNIR + Rred) Rouse et al. (1974)9 
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Modified Chlorophyll Absorption in 
Reflectance Index (MCARI1) 

[ ])(*3.1)(*5.2*2.11 550800670800 RRRRMCARI −−−=  Daughtry et al. (2000)36 

Modified Chlorophyll Absorption in 
Reflectance Index (MCARI2) 

[ ]
5.0)*5*6()1*2(

)(*3.1)(*5.2*5.12
670800

2
800

550800670800

−−−+

−−−
=

RRR

RRRRMCARI
 

Daughtry et al. (2000)36 
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Qi et al. (1994)38 

Optimized Soil-Adjusted Vegetation 
Index (OSAVI) 

OSAVI  =  (1 + 0.16) * (R800 – R670) / (R800 + R670 + 
0.16) Rondeaux et al. (1996)39 
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Chlorophyll Indexes Equation Reference 

Transformed CARI (TCARI) TCARI  =  3* [(R700 – R670) – 0.2* (R700 – R550)* (R700 / R670)] Haboudane et al (2002)40 
Triangular Vegetation Index 

(TVI) 
[ ])(*200)(*120*5.0 550670550750 RRRRTVI −−−=  Broge and Leblanc 

(2000)41 
Photochemical Reflectance 

Index (PRI) 
PRI1 = (R528 - R567)/(R528 + R567) 
PRI2 = (R531 - R570)/(R531 + R570) Gamon et al. (1992)42 

Cellulose Adsorption Index 
(CAI) 2100)22002020(5.0 RRRCAI −+=  Daughtry et al.(1995)43 

 
Vegetation Water Indexes Equation Reference 

Normalized Difference Water 
Index (NDWI) NDWI=(R860-R1240)/ (R860+R1240) Gao, (1996)44 

Simple Ratio Water Index 
(SRWI) SRWI=R858/R1240 

Zarco-Tejada et al., 
(2003)45 

Shortwave Infrared Water Stress 
Index (SIWSI) 26

26
ρρ

ρρ
+

−=SIWSI 1.652−1.628=6−= ρρ ;876.0841.02  Fensholt and Sandholt 
(2003)46 

Plant Water Index (PWI) PWI= R970/R900 Peñuelas et al. (1997)47 
 
bands to clay minerals and organic matter in tropical soils. Soil taxonomic units were separated statistically by Palacios-
Orueta and Ustin7 through PCA identification of those bands with the greatest explanation of the variance in lab data 
and Airborne Visible InfraRed Imaging Spectrometer (AVIRIS, NASA). Soil components of iron, organic matter, 
titanium oxide, aluminum oxide and silicate separated three major soil types in central Brazil using the 0.010 µm 
wavelengths of AVIRIS48. Palacios-Orueta et al.49 estimated organic matter and iron contents in coastal shrub land soils 
using a hierarchical foreground-background process.  
 
Identifying specific mineral contents is possible with hyperspectral imagery through the mineral absorption position and 
depths14, 50, 51. Clay and salt estimation techniques were applied to agricultural soils with AVIRIS and HyMap (HyVista, 
Inc., Sydney, AU) imagery by the continuum removal band depths52, 53. There is a potential for applying  narrow band 
techniques using broad-band imagery by fitting spectra to the general band center positions and cross-correlation to 
spectral references54. 

 
Moisture dramatically alters 
soil albedo, and thus, the 
mineral and organic matter 
spectral signatures. Water is 
a primary component among 
the many compositional 
variables in the soil surface 
interacting with the incident 
light. Bowers and Hanks55 
described the decrease in 
soil reflectance from the 
visible through the 
shortwave-infrared (0.4 – 
2.5 µm), with increasing 
moisture, as shown in Figure 
1. In the laboratory, many 
investigators have 
demonstrated that the water 
and clay bands are good 
predictors of water content56-

58. Increasing moisture has a 

Oven Dried 
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0.20 

0.30 

0.42 
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Figure 1. For this high clay content soil, the loss of albedo is a function of increasing 
gravimetric water content 33. 
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non-linear effect in decreasing 
albedo, and reducing the apparent 
strength of the absorption features of 
the minerals and organic matter56, 57. 
In imagery, these water bands at 1.4 
and 1.9 µm are susceptible to 
saturation by atmospheric water 
vapor measured by airborne and 
satellite platforms. To improve the 
accuracy of quantifying soil 
characteristics, the effects of varying 
soil moisture on hyperspectral images 
must be removed. Whiting et al.33 
fitted inverted Gaussian functions to 
the convex hull boundary points, 
transformed to natural log, in the 
shortwave-infrared (SWIR) region of 
a bare soil spectrum, Soil Moisture 
Gaussian Model (SMGM) (Table 1; 
Figure 2)33. The function’s variables 
with the greatest predictive value are 
the depth (amplitude) and the area 
above the spectral continuum. The 

continuum is fitted with an inverted Gaussian distribution function after Miller et al.20 in Table 1. 
 
For two distinct Mediterranean regions of San Joaquin Valley California, USA, clayey soils, and Castilla-La Mancha, 
Spain, coarse textured, calcareous soils were spectrally measured through a sequence of gravimetric moisture contents 
from oven and air dry through saturation. Below field capacity, the model was highly predictive, estimating the water 
content within 2.7% (RMSE) with coefficient of determination (r2) of 0.92 among both soil regions. When separated 
into landform position (Spain) and salinity (USA), estimates of the water content improved to between 1.7 to 2.5% 
(RMSE), with r2  of 0.94 to 0.98 (p < 0.001). 
 
Metternicht and Zinck59 estimate that nearly 20% of all irrigated land globally is saline-affected. Management of water, 
seed and nutrients, and reclamation amendments, such as gypsum and sulfur, are substantial input costs to growers. 
Salinity mapping, especially with satellite images, has depended on plant indicators60, generally due to the vigor or lack 
of vegetation cover. In cropped fields, the reduction of plant vigor is readily identified, multispectral bands using 
NDVI61. Saline and sodic soil reflectance revealed salt mineral (amorphous or crystal), and quantified through many 
common remote sensing procedures such a continuum absorption feature matching technique and plant indicators on 
ground measurements and hyperspectral (HyMap) images for segmenting of the salinity classes62. 

1.3  Techniques in identifying crop characteristics 
A number of promising techniques have been investigated for determining the crop stress due to the lack of nutrient and 
water, and the abundance pests. Nearly all the spectroscopy techniques described above have been applied to determine 
various crop conditions. An excellent review of techniques for estimating water stress in crops from hyperspectral 
images is presented by Moran et al.63, Champagne et al.64, and Downing et al.65. Development of simulated spectra for 
agricultural crops under various conditions is enhanced by parameterizing the water content to Equivalent Water 
Thickness (EWT). Tucker66 determined light absorption in the SWIR region (1.55 to 1.75 um) for satellite measured 
reflectance was optimum for estimating the amount of water in the canopy. 
 
Serrano et al.67 demonstrated AVIRIS hyperspectral imagery has sufficient spectral resolution to accurately estimate the 
Relative Water Content (RWC, wet weight to dry matter weight), using the water band indexes such as Plant Water 
Index (PWI)47 in chaparral community communities along the California coast. The best correlation to RWC were with 
indexes in the SWIR region, (WI, r2 = 0.38, p<0.05; Normalized Difference Water Index (NDWI)44 (r2 = 0.44, p 

Figure 2. Water fundamental absorption influence on SWIR continuum modeled by 
fitting an inverted Gaussian function to the convex hull boundary points (+) from the 
position of maximum reflectance (λi) to the assigned water fundament center (λ0), 
with Gaussian amplitude (Rd) and distance to inflection (σ). The Gaussian area, 
above the spectrum, is denoted as A 33.  
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<0.001). The liquid water band absorptions in the SWIR were also well correlated with AVIRIS data68. The use of water 
content is important in fuel load moisture contents in fire susceptible communities such forests and chaparral. 
 
The change in vegetation reflectance in the visible region due to stress conditions is apparent by the changes in 
chlorophyll content as a function of metabolic change69. NDVI and Simple Ratio Indexes (SR)9 are among the examples 
of band ratio indexes that exploit the relationship of chlorophyll absorption to the structural reflectance in the NIR 
region (Table 1). Gamon et al.42 presented the Photochemical Reflectance Index (PRI) from narrow band spectral would 
correlate with xanthophyll cycle pigments and the efficiency of photosynthesis, and nitrogen stress in sunflower 
canopies. From analysis of 490 bands in the visible region (0.35 - 1.05 µm), Thenkabail et al.70 determined the optimum 
12 bands for a tuned-filter instrument for estimating wet biomass, Leaf Area Index (LAI), yield (cotton), and canopy 
cover by comparing the broad-band NDVI, narrow band multiple-regression-determined selection of bands, and 
Transformed Soil-Adjusted Vegetation Index (TSAVI)37 using cotton, soybeans, corn, and potatoes. The principle bands 
related to crop characteristics were greatest in the red (0.65 - 0.70 µm), next in the green (0.50 - 0.55 µm), and lastly 
with a narrow region of the NIR (0.90 - 0.94 µm). Notably, the band sensitive to moisture was centered on 0.98 µm. 
Blackburn71 used hyperspectral narrow bands to separate chlorophylls a and b, and carotenoids in bracken canopy. 
Though pigment-specific simple ratios related the concentration per unit area of individual pigments within the canopy, 
spectral derivatives of optical thickness (Log 1/R) were also closely associated with canopy pigment concentration, and 
were closer to estimating of concentration per unit mass of pigments both canopy and leaf. 
 
Plant stress due to water, nutrients, and pest infestation reduce production, and are important indicators of yield. 
Regressions are still the primary method for calibrating the observed nutrient status and the image spectra72. Carter and 
Miller73 used narrow bands, approximately 0.01 µm, within tuned-filter CCD imagery to determine image band centers 
for vegetation chemical stress at 420, 600, 670, 694, and 760 based on earlier research. Carter and Knapp74 later linked 
plant stress to loss of chlorophyll, as 0.70 µm reflectance increases, as well as changes in the shorter wavelengths in 
green-yellow region. Kokaly and Clark17 demonstrated the potential for Continuum Removed band depth measurements 
by a high correlation to nitrogen status after water was removed. Using band depth methods, Curran et al. were also 
successful in estimating biochemical concentrations of total chlorophyll, nitrogen, cellulose, sugar, chlorophyll a and b, 
lignin and water contents 18. 
 
Due to the general effect of stress on vegetation as describe above, the common indexes, such as NDVI, when combined 
with strategic sampling, are effective in identifying regions within fields for managing insect infestations75. Qin and 
Zhang76 demonstrated blight stress could be determined in rice using multi-band airborne, and Zhang et al.77 were 
successful in determining blight in tomatoes using hyperspectral imagery with Minimum Noise Fraction, before 
applying Spectral Angle Mapper78 (ENVI, Research Systems, Inc., Boulder, CO, USA). 

2. APPLICATIONS 
2.1  Study area 
The AZCAL management farms, in the southern San Joaquin Valley near the city of Lemoore in Kings County, 
California, are approximately mid-way between Los Angeles and San Francisco. The farms produce cotton, garlic, 
tomatoes, wheat, garbanzo beans, and pistachio nuts. Large quarter-section fields, approximately 64.8 ha, in a 9.2 km2 
area11, 53, 79. Our studies over the past eight years concentrated on increasing the adoption of precision agriculture 
practices in cotton (Gossypium hirsutum L.) production. Among these remote sensing studies, we have investigated 
plant water stress indicators for timing irrigation, narrow-band indexes for anticipating yield, variable-rate applications 
of harvest aid chemicals, and for generating clay content maps as input to GIS prescription models. 

2.2  Plant water contents and irrigation timing 
Ustin et al.79 showed absorptions depths at the 0.98 µm region indicated water content and stress by relating the index to 
the number of days since irrigation application. In this study, the effectiveness of using the band depth at 0.98 µm was 
compared to the more common band ratio methods of NDVI and NDWI. NDVI is dependent on chlorophyll absorption 
and is not sensitive to water content, and while leaf water does not absorb energy in the red and NIR bands. This index 
nonetheless has been used with multispectral airborne and satellite imagery for water determination. 
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During the 2005 season, the 
studies were conducted on 
three 65 ha (160 ac) fields 
during July, August, and 
September. Within each 
field, five plots were 
established using DGPS over 
the range of water stress 
levels from the maximum 
allowed by the grower just 
before irrigation to the 
minimum just after 
irrigation. Field spectral 
measurements were 
collected using a full range 
ASD Field Pro spectrometer 
(Analytical Spectral 
Devices, Boulder, CO, 
USA), calibrated to 

Spectralon 99% reflectance standard panel (Labsphere, Inc, North Sutton, NH, USA), and post-processed using 
manufacturer's NIST calibration coefficients. In these three field campaigns, we collected 1584 canopy spectra to match 
whole plant water content and leaf water potential (pressure chamber) (7/23-25/05; 8/17-18/05; 9/07/05). The leaf 
reflectance and transmittance, and corresponding water content relative to leaf biomass and maximum water content 
were measured in 1893 samples (7/25/05; 8/17-18/05; 9/07/05; 10/4/05) using an integrating sphere (model 1800, LI-
COR Biosciences - Environmental, Lincoln, NE, USA) with the ASD spectrometer. The canopy equivalent water 
thickness (EWT) is a function of plant density and growth stage, which were measured by determining the number of 
plants in 2-m samples along the rows and mapping the plant structure (8/17-18/05). The relationship of LAI to cotton 
plant mapping is well established. 
 
In initial analyses for the July 25 - 27, 2005 field campaign, there were no trends relating increasing water stress to 
NDVI, as measured by water content and leaf water potential (pressure chamber). This is reasonable since the visible 
and near infrared regions have a low sensitivity to short-term water stress. NDWI44, PWI47, and other common indexes 
also showed little or poor correlation to plant and leaf water content.   
 
In previous years, we found some correlation between water stress and individual water absorption band depths79 using 
continuum band depths, however, this season the correlations were poor. To improve the reliability of band depth 
indexes, the difference in leaf reflectance between the water band and its short or long wavelength shoulder were 
normalized following the methods used for NDVI and NDWI. The most successful were at PWI bands of 0.90 and 0.98 
µm (NPWI) and the water bands in the NIR region at 1.08 and 1.14 µm (NPWI-2). Since the SWIR region of vegetation 
spectra is strongly related to water content66, probably due to the water fundamental absorption at ca. 3.0 µm, water 
content could be estimated by the inverted Gaussian fitting algorithm SMGM33. Each of these individual water band-
depth ratios were individually correlated with whole leaf and whole plant water content, and leaf water potential, 
although poorly. However, by combining these water indexes, the canopy water content was well correlated. Water 
potential was predicted within 0.3 MPa RMSE (R2 = 0.66), leaf water content within 2 g/g RMSE (R2 = 0.60), and 
whole plant water content within 0.67 g/g RMSE (R2 = 0.54; all p_values < 0.01).   

2.3  Defoliation and reduced harvest aid chemical  
Before harvesting cotton in the Southwest USA, this perennial plant is sprayed with herbicide, hormones, and desiccant 
chemicals, to shed leaves. Over past two years, 2004 and 2005, canopy spectral reflectance data was gathered during the 
early fall defoliation period while measuring the effectiveness of defoliation (desiccation, re-growth after treatment, and 
dry matter and water content). Our collaborators included University of California Cooperative Extension Specialists at 
the UC West Side Research and Extension Center (WSREC), and California State University Fresno researcher, and a 
commercial grower. The present methods for determining the timing and effectiveness of applications are through 
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visual estimation and ground measurements, such as Nodes Above Cracked Boll, % open bolls and the cut boll 
technique.  Understanding and monitoring boll maturity is critical to obtaining high-quality lint. 
 
Irrigation is shut off about a month before the harvest aid chemicals are applied, but residual plant and soil moisture 
varies over the fields, and this retards the effectiveness of the chemical applications. Determining the rate of defoliation 
will reduce unnecessary defoliant and residual chlorophyll staining in the cotton lint. To determine the most cost 
effective rates of applying harvest aid chemical, the chlorophyll and water content were monitored from before 
irrigation shutoff to the day before harvest, by measuring canopy reflectance using field spectrometers. These 
measurements will lead to developing image analysis techniques for site-specific defoliation management, and when 
combined with soil clay maps, identify specific areas within fields that can impact late season crop vigor and 
responsiveness to water, nutrient, or harvest aid management. 
 
During 2004 the chemical applications were based on label recommendations, where during 2005 variable rates were 
applied on trial plots. At WSREC, the defoliation treatments were applied to three Acala cultivars (upland cotton), 
replicated over four randomly distributed 100 m by 4 m plots. Eight regularly spaced spectral measurements were 
collected along a longitudinal transect in each plot. These transects were repeated eight times between the two sites over 
the two week period following defoliant treatment four days after the first (9/22/04), and three (9/28/04), six (9/30/04), 
10 (10/3/04), and 13 (10/6/04) days after the second treatment. The plant water and biomass measurements were made 
on three and 13 days after the second application, at the same time the overall yields, trash (non-lint) content, and other 
defoliation metrics within each trial plot were made. Fourteen spectral indexes, including structural, vegetation, water, 
cellulose and chlorophyll indexes, were calculated from the collected spectra. The index calculations were based on 
previous work by Zarco-Trejada et al.11, and are among those in Table 1. 
 
After post-processing the ground spectra with the Spectralon NIST coefficient data and eliminating anomalies, the 
spectral data were convolved to the wider band intervals of the NASA-AVIRIS sensor, then combined into "data cubes" 
as synthetic images. Initial processing was completed in ENVI software using band-math for common 14 vegetation 
spectral indexes and other classification schemes. The correlations between spectral indexes vary substantially through 
the defoliation period and between indexes and cultivars. The amount of trash predicted by the Simple Ratio Water 
Index (SRWI)45 and Cellulose Adsorption Index (CAI)43, 80 for the absorption assigned to lignin at 2.1 µm. The CAI 
appears to be the most promising for all cultivars in accurately predicting trash levels (Figure 3). For example, structural 
indexes were generally mixed levels of correlation four days after the first defoliant was applied, but correlation 
improved after the second defoliant application for some cultivars. Structural indicators (i.e., leaf and plant density) 
included NDVI, Modified Triangular Vegetation Index (MTVI)8, Renormalized Difference Vegetation Index (RDVI)34, 
and Optimized Soil-Adjusted Vegetation Index  (OSAVI)39. Water content indicators included band depth at 0.98 µm 
absorption, NDWI, SRWI, Shortwave Infrared Water Stress Index (SIWSI)46, and SRWI. The chlorophyll content 
indicators included Modified Chlorophyll Absorption in Reflectance Index (MCARI)36 and Transformed Chlorophyll 
Absorption Reflectance Index (TCARI)40 and the cellulose indications based on the CAI. These indexes were then 
correlated to yield and trash (debris) content within four plot replicates for each of the three cultivars. The least squared 
mean fitted values to trash levels for structural indexes NDVI and OSAVI as the defoliation progresses are shown for a 

Figure 4. Comparison of common NDVI to OSAVI as indicators of trash content in harvested Maxxa upland cotton. 
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single cultivar Maxxa in Figure 4. Three trial plots indicated a rapid reduction of water, chlorophyll and amount of 
structure present. Inversely proportional with the other index categories, CAI showed an increase in the amount 
cellulose present over the course of the defoliation period. 

2.4 Crop yield estimation in cotton  
An important parameter in application rate decisions is early estimates of yield. Vegetation indexes from the decades of 
broad-band sensor research have been incorporated into hyperspectral methods for crop condition and yield estimation. 
Such indexes as NDVI are commonly used despite the demonstrated saturation of NDVI values at leaf area index (LAI) 
values above 3 and 4. 
 
To determine the reliability of common indexes and a number of new narrow-band hyperspectral indexes to predict 
yield over time, hyperspectral visible and near infrared imagery for one field at our cotton field site was acquired nearly 
weekly for an entire growing season in 200111. Airborne Visible and Near InfraRed (AVNIR) hyperspectral sensor 
(OKSI, Inc., Torrance, CA, USA) images provided high spatial resolution of 1 m with 60 bands of 0.01 µm bandwidth 
from 0.43 µm to 1.01 µm. The yield data image provided by yield monitor and on-board computer software (Model 
AG700, AGRIplan, Stow, MA, USA) had a 4.5 m2 resolution. After cross-calibrations among the images, the AVNIR 
data was resampled to the same spatial resolution of the yield monitor. The within-field variability of yield data was 
related to crop growth and canopy structure, chlorophyll concentration, water content and red-edge parameters. From 
these biophysical parameters, appropriate vegetation indexes were selected and their correlations to the gross cotton 
yield within each pixel through the different growth stages were compared. A K means clustering method was used to 
perform field segmentation on this temporal series of hyperspectral indexes in classes of low, medium and high yield, 
and confusion matrices used to calculate the kappa (κ) coefficient and overall accuracy. 
 
Our results show that certain optical indexes and spatial yield variability are critically dependent on the growth stage, 
suggesting a potential for narrow band indexes at early and mid-growth stages will provide important crop management 
information11. We found the best hyperspectral indexes for capturing yield variability were the structural indexes 
MTVI1, MTVI28, NDVI9, RDVI34, Modified Simple Ratio (MSR)35, and OSAVI39, and Modified SAVI (MSAVI)38. 
The next group of indexes that performed well were the Chlorophyll Indexes Triangular Vegetation Index (TVI)41, 
MCARI1, MCARI236, and TCARI40. 
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Figure 5. Correlation coefficients (r) obtained between spatial yield data and hyperspectral indices as function of time.  
The best correlation coefficient for any index is labeled MAX, compared with indices (a) NDVI, RDVI, MTVI1,  
 (b) MCARI, TCARI, OSAVI 11. 
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In figure 5, the maximum correlation 
coefficient among all indexes obtained for 
each image date (MAX) is plotted along 
with the structural indexes NDVI, RDVI, 
MTVI1 (Figure 5a), and chlorophyll indexes 
MCARI, TCARI, OSAVI (Figure 5b) 
through time. Structural indices related to 
LAI (MCARI, MTVI, OSAVI) obtained the 
best relationships with yield and field 
segmentation at early growth stages. On the 
other hand, narrow-band indexes related to 
chlorophyll concentration and crop 
physiological status (MCARI, TCARI) were 
slightly better at later growth stages, close to 
harvest. The last irrigation was applied on 
18 August 2001, before the 21 October 2001 
harvest. The confusion matrices and class-
analyses determined the highest overall 
accuracy (and kappa) for structural and 
chlorophyll indexes during the early stages 
was near 61% (κ=0.39) during July, 
dropping to 39% (κ=0.08) prior to harvest in 
October. MCARI chlorophyll index 
remained sensitive to within-field yield 
variability at late pre-harvest stage, 
obtaining overall accuracy of 51% (κ=0.22). 
The water indexes such as the NDWI, 
SRWI, PWI, and Gaussian parameters fitted 
to the red-edge were poor predictors of 
yield. 
 
The three classes were segmented in the 

yield and index images using K-Means classes. For the yield image (Figure 6a), from a principal component analysis for 
the most descriptive 60 reflectance bands (Figure 6b), NDVI (Figure 6c), and OSAVI (Figure 6d) for the time period of 
maximum prediction accuracy (5 July 2001). There is a slightly closer visual agreement between the yield segmentation 
and OSAVI than NDVI classes, which corresponds to the slightly better correlations, r = 0.61 and 0.59, respectively. 
The use of PCA to select reflectance bands led to larger individual clusters in the classes, and less sensitive field 
segmentation, demonstrating that hyperspectral indices built on specific bands related to crop condition were better 
suited in this experiment for segmenting the field into zones of homogeneous yields for less precise management. 

2.5  Soil surface mineral contents and moisture relationship 
Greater spatial resolution in mapping mineral and organic matter contents contributes to improved modeling of plant 
and soil responses to various resource management and global changes in soil health, erosion, and desertification. 
Advances in precision farming require greater knowledge of the spatial heterogeneity in the mineral components to 
develop prescription models for water, nutrient, herbicide and pesticide applications, as well as improved management 
of nitrate and irrigation applications to reduce ground water pollution. 
 
NASA collected AVIRIS data on 5 May 2002 over cotton fields near Lemoore, California53. The images contain 
nominal 10 m pixels in 224 channels between the 0.40 µm to 2.50 µm, with a nominal 0.01µm FWHM channel81. This 
image was atmospherically corrected using ACORN software (AGI, Boulder, CO, USA) and georectified by 
differentially corrected global positioning system (DGPS) measured image ground features. The affect of variable soil 
surface roughness on reflectance increases with salinity due to deflocculation by the sodium salt. The soil clods are less 
friable and there is greater horizontal orientation of the silts and clays before tillage. The productive and non-productive 

(a) Yield    (b) 60 bands 

(c) NDVI     (d) OSAVI 
Figure 6. Unsupervised K-means clustering method for low (red), medium 
(green) and high yield (blue) classes calculated from the hyperspectral 
airborne image that obtained the highest correlation with yield (5 July 
2001) 11.  
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areas in the fields were separated for different regression models using a CIR composite of an earlier AVIRIS image, 28 
August 1999, of the cropped fields that clearly show the variation in vigorous plants and no plants due to the high 
salinity (Figure 7a). A 5 May 2002 AVIRIS image of the bare soil fields was acquired after field preparation for spring 
planting, and before the first irrigation. The planting beds were shaped and surface aggregates were uniform. The 
productive and non-productive areas in the bare fields, and the roads and vegetated fields were masked separately 
before analysis using the interactive digitizer in the ENVI software. The sampling strategy can be seen in the 5 May 
2002 AVIRIS image as white crosses where samples were collected in each of the adjacent nine pixels, Figure 7b. The 
registration accuracy of this image was within one pixel.  
  

Registration and sample location 
inaccuracies were overcome 
creating regions of interest (ROI) 
around ground reference data 
using a 3 x 3 pixel window. A 
weighted average spectrum was 
generated from the ROIs to extact 
nine spectra at each sample plot 
seen in Figure 7a and b. The 
influence of the salinity strata was 
included by selecting an equal 
number of samples, with two sites 
within each soil saline/non-saline 
strata.  All three parameters, clay 
and carbonate continuum removed 
band depths and SMGM, were 
used as regressors in step-wise 
multiple regressions for predicting 
lab analyses mineral contents53. At 
Lemoore, smectite clay contents 
ranged from 22 - 43%, and these 

secondary clay mineral absorptions were strong at ~2.2 µm. 
 
In Lemoore, 53 samples were used to model clay content. The clay band depth alone was a poor predictor of clay 
content with r2 = 0.24 and 4.0 % RMSE clay content. By combining the SMGM with the clay band depths, the R2 
doubled to approximately 0.51, and the RMSE decreased to 3.6 %. The difference in RMSE contributed by residual 
moisture in these air dried soils, approximately 4 to 8% water content, was approximately 0.4 % clay RMSE, or a 10% 
reduction in prediction error on a mean of 30.0 %. At air dry status, the SMGM, with these predominant clay soils, 
predicted clay content equally as well as the spectral band depth. With greater soil moisture, the SMGM is expected to 
improve the clay content estimates. Within these error estimates is the variability in the laboratory measurement and 
thus increases the spectral correlations. Having determined the mineral content model, the regression coefficients were 
applied using band math to generate clay contents for each pixel. The resulting image is shown as gray scale for clay 
content (Figure 7b.) 53. 

 
3. CONCLUSION 

The advantages of hyperspectral imagery include the selection of specific bands for indexes, and the use of the wide 
range of spectroscopy analyses. Laboratory and field spectroscopic techniques were described that have demonstrated 
accuracies for identifying and quantifying vegetation and soil biophysical components can be or have been extended to 
field spectrometer, airborne and satellite imaging spectroscopy. These spectroscopic techniques will increase the 
information derived from a dense hyperspectral dataset for a variety of users investigating diverse applications using the 
same spectra. 
 
Illustrated here are a few application examples for determining spectral bands useful in hyperspectral imaging 
spectrometers, as well as broad-band instruments, for precision agriculture in cotton production and soil management. 

Clay  
Content (%) 

 
45 
 
 
22 
Nodata 

Figure 7 a) AVIRIS, 28 August 1999, false color infrared image (CIR) of full 
canopy cotton of Lemoore project site, b) AVIRIS image, 5 May 2002, in gray scale 
of clay contents of bare soil fields 53. 
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New analyses will give us water and nutrient stress information in time to respond without yield reduction. Indexes 
remain valuable tools for producers to evaluation the crop status, even with limited multi-band instruments. Plant and 
water indexes provided good predictors of cotton condition as harvest approached. With hyperspectral data, absorption 
modeling and strength measurements are viable means of estimating plant moisture and nutrient status. Measuring soil 
mineral abundance can be improved by accounting for the effect of soil moisture on the spectra.  
 
Further research in use of imaging spectroscopy will lead to higher precision as producers refine their prescription 
models and application techniques. Our field data, and collaborators airborne imagery and field data on plant mapping 
and canopy density, make a tremendous dataset that will take additional time to process. Continued investigations into 
irrigation scheduling using crop reflectance over a broad range of water contents, readiness for harvest aid chemical 
applications, and related field measurements will lead to improved accuracy in providing this key management 
information. 
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